5,991,518

25

Likewise, FIG. 3 is a graph # 300 logically representing
a two-processor multi-processor system # 300. The graph
300 of FIG. 3 is fully connected. When communication
faults occur dividing the system # 300 into the graph
500 of FIG. 5, each processor #_112 marks the other as
unreachable in the mask of reachable processors and applies
the split-brain avoidance methodology described above. The
processor 1, for example, may notice its failure to receive an
IamAlive message from processor 2. The processor 1
accordingly initiates a regroup operation. In Stage I of that
Regroup operation, the processor 1 starts its internal timer,
resets its connectivity matrix C and suspends I/O activity.
The processor 1 then sends a Regroup message and prepares
to receive and compare Regroup messages in order to update
its connectivity matrix C. In this scenario, however, the
processor 1 receives no such Regroup messages. When the
appropriate time limit has been reached (and if the processor
1 of itself constitutes enough resources to continue
operations, if appropriate), the processor 1 proceeds to Stage
II.

In Stage II, the processor 1 selects itself as the tie-breaker
processor # 112 since it was the lowest numbered processor
112 at the end of the last regroup operation to complete.

The processor 1 then applies the split-brain avoidance
methodology: The processor 1 recognizes that the group of
processors # 112 of which it is a part has neither more nor
less than one-half of the processors # 112 that were present
before the regroup operation began. Its group has exactly
one-half of the pre-existing processors # 112, and the
processor 1 uses the fact that it is itself the tie-breaker
processor # 112 as the decision point to continue opera-
tions.

Not being the tie breaker, the processor 2 attempts to
check the state of the tie-breaker processor 1 (in one
embodiment, using the service processors). If the state of the
tie breaker can be determined, the processor 2 realizes that
the tie breaker is healthy. The processor 2 halts.

Where the state of the tie-breaker processor 1 cannot be
determined, the processor 2 checks the mask of unreachable
processors. Noting that the tie breaker is marked
unreachable, the processor 2 assumes that the tie breaker is
healthy and halts.

Thus, the tie-breaker processor 1 continues operation
while the processor 2 halts.

The processor 1 selects itself as the tie-breaker processor
112 and remains in Stage II until a reasonable amount of
time passes. (The processor 2 cannot and indeed does not
send Regroup messages as the communication fault has
occurred and the processor has halted.)

The processor 1 applies the pruning process and deter-
mines the group of processors # 112 that are to survive the
regroup operation. Using its memory-resident connectivity
matrix C as input, the tie breaker computes the set of all dead
processors, {2}, and converts its matrix C into canonical
form. This conversion leaves a 1x1 matrix C including only
the processor 1. The tie breaker computes the set of discon-
nects as the set {(1, 2), (2, 1)}, with D=2. However, as the
set of live processors {1} does not include the processor 2,
applying these disconnects to that set has no effect. The
number of maximal, fully connected graphs is one, and the
tie breaker sets its pruning result variable to indicate that
only it will survive. The tie breaker communicates this result
in its subsequent Regroup messages and thus passes through
Stages III and IV. The system # 500 completes the regroup
operation and continues operations with only the processor
1 running.

Finally, consider again the logical multi-processor sys-
tems #_200. Now, the processor 2 experiences a corruption

10

15

20

25

30

35

40

45

50

55

60

65

26

of its time list, fails to receive timer expiration interrupts and
loses its ability to send the requisite lamAlive messages. The
detection of the missing lamAlive messages by any of the
other processors 1 or 3—-5 causes a regroup operation to
begin.

In Stage I of the regroup operation as related above, the
processors 1-5, operating according to one embodiment of
the invention, each refrain from sending respective Stage I
Regroup messages until each receives a timer expiration
interrupt. Thus, the processors 1 and 3-5 readily proceed to
send Stage I Regroup messages.

By hypothesis, the processor 2 does not receive timer
interrupts and thus never sends a Stage I Regroup message.
The other processors 1 and 3-5 update their respective
KNOWN_STAGE__1 variables #_ 750a (and/or their
respective connectivity matrices C) to reflect the healthiness
of the processors 1 and 3-5 and the apparent death of the
processor 2. After some predetermined amount of time has
passed waiting for the processor 2, the processors 1 and 3-5
proceed to Stage II.

In Stage II, the processors 1 and 3—5 now broadcast Stage
IT Regroup messages. The processors 1 and 3—5 are healthy
and the processor 2 is still malatose, and the Stage II
Regroup messages eventually reflect this condition. The
KNOWN__STAGE_ 2 variable # 750b becomes equal to
the KNOWN__STAGE_ 1 variable #_750a.

The processor 2, by hypothesis, still receives the Regroup
messages from the processors 1 and 3-5. It eventually
receives a Stage II Regroup message wherein the
KNOWN_STAGE_ 1 and _ 2 variables # 750a, #_750b
are equal and exclude the processor 2. The processor 2
notices this type of Stage II Regroup message and halts.

Processors 1 and 3-5 proceed through the remainder of
the regroup operation and form the system N__200'. Now,
instead of the IamAlives missing from the processor 2
periodically perturbing the system N_ 200, the system
N_200" excludes the processor 2 altogether. (Also, the
processor 2 is dead and therefore harmless.)

Of course, the program text for such software incorpo-
rating the invention herein disclosed can exist in its static
form on a magnetic, optical or other disk; in ROM, in RAM
or in another integrated circuit; on magnetic tape; or in
another data storage medium. That data storage medium
may be integral to or insertable into a computer system.

What is claimed is:

1. In a multi-processor having a plurality of processors,
each of said plurality of processors having a respective
memory, a method for improving tolerance for inter-
processor communications faults, said method comprising:

communicatively coupling said plurality of processors;
then detecting a communications failure;

then attempting to firstly determine on each of said
plurality of processors still operating which of said
plurality of processors are still operating and still
communicatively coupled, thereby determining said
each processor’s respective view of said multi-
processor system;

then secondly determining on said each processor still
operating whether said each processor still operating is
to halt operations if said each processor’s respective
view of said multi-processor system indicates that said
processor(s) still operating and still communicatively
coupled number less than one-half of said plurality of
processors; and

then continuing or halting operations on said each pro-
cessor according to said second determination.

